VECTOR VALUED PARANORMED BOUNDED AND NULL SEQUENCE SPACES ASSOCIATED WITH MULTIPLIER SEQUENCES

BY

BINOD CHANDRA TRIPATHY AND MAUSUMI SEN

Abstract. In this article we introduce the multiplier vector valued sequence spaces $\ell_\infty\{E_k, \Lambda, p\}$ and $c_0\{E_k, \Lambda, p\}$, where $\Lambda = (\gamma_k)$ is an associated multiplier sequence of non-zero complex numbers and the terms of the sequence are chosen from the seminormed spaces E_k, $k \in N$. This generalizes the scalar sequence spaces $\ell_\infty\{p\}$ and $c_0\{p\}$. We study some properties of these spaces like solidity, completeness and prove some inclusion results. We characterize the multiplier problem and obtain their duals.

1. Introduction

Let w denote the set of all sequences of complex terms. Then w is a linear space under co-ordinatewise addition and scalar multiplication. Any subspace of w is called as a sequence space. For example ℓ_∞, the set of all bounded complex sequences is a sequence space.

The notion of paranormed sequence space was introduced by Nakano [10] and Simons [15]. It was further investigated from sequence space point of view and linked with summability theory by Maddox [8, 9], Lascarides [6], Nanda [11], Ratha [13], Rath and Tripathy [12] and many others.

The studies on vector valued sequence spaces is done by Gupta [3], Ratha and Srivastava [14], Das and Choudhury [1], Leonard [7], Tripathy and Sarma [16] and many others.

Received May 31, 2002; revised November 7, 2002.
AMS Subject Classification. 40A05, 46A45.
Key words. paranormed sequence spaces, solid spaces, multiplier sequence.
The scope for the studies on sequence spaces was extended by using the notion of associated multiplier sequences. Goes et al. [2] defined the differentiated sequence space dE and integrated sequence space $\int E$ for a given sequence space E, using the multiplier sequences (k^{-1}) and (k) respectively. Kamthan [4] used the multiplier sequence $(k!)$. In the present article we shall consider a general multiplier sequence $\Lambda = (\gamma_k)$ of non-zero scalars.

Let $\Lambda = (\gamma_k)$ be a sequence of non-zero scalars. Then for E a sequence space, the multiplier sequence space $E(\Lambda)$, associated with the multiplier sequence Λ is defined as

$$E(\Lambda) = \{(x_k) \in w : (\gamma_k x_k) \in E\}.$$

Example 1. Let $\gamma_k = k^{-1}$ for all $k \in N$. Then

$$c_0(k^{-1}) = \{(x_k) \in w : k^{-1}x_k \to 0, \text{ as } k \to \infty\}.$$

From the above example it is clear that $c_0(k^{-1})$ contains some unbounded sequences too. Further it accelerates the convergence of the sequences in c_0. It also covers a larger class of sequences for the study. Some times the associated multiplier sequence delays the rate of convergence of a sequence.

During a chemical reaction, a catalyst is used to accelerate the process of reaction. For example AIBN is used as a catalyst for polymerization.

2. Definitions and Preliminaries

Let X be a linear space and $g : X \to R$ is such that

(i) $g(x) \geq 0$.
(ii) $x = \theta$ implies $g(x) = 0$.
(iii) $g(x + y) \leq g(x) + g(y)$.
(iv) $g(-x) = g(x)$, for all $x \in X$.
(v) $g(\lambda_n x_n - \lambda x) \to 0$, as $n \to \infty$, for scalars λ_n and λ and $x_n, x \in X$, whenever $\lambda_n \to \lambda$ and $x_n \to x$, as $n \to \infty$.

Then g is said to be a paranorm on X and (X, g) is called a paranormed space.
Example 2. Let \(p = (p_k) \) be such that \(p \in \ell_\infty \) and \(M = \max(1, \sup p_k) \). Then
\[
\ell_\infty(p) = \{ (x_k) \in w : \sup_k |x_k|^{p_k} < \infty \}
\]
is a paranormed space, paranormed by \(g(x_k) = \sup_k |x_k|^{\frac{p_k}{M}} \).

A vector valued sequence space \(E \) is called solid (or normal) if \(\alpha x = (\alpha_k x_k) \in E \), whenever \(x = (x_k) \in E \) and \(\alpha = (\alpha_k) \) is a sequence of scalars such that \(|\alpha_k| \leq 1\) for all \(k \in \mathbb{N} \). A sequence space \(E \) is said to be monotone if \(E \) contains the canonical preimages of all its subspaces (one may refer to Kamthan and Gupta [5], p.48).

Throughout the article \(E_k \) will denote a seminormed sequence space, semi-normed by \(f_k \) for all \(k \in \mathbb{N} \), defined over \(C \), the field of complex numbers. Throughout \(p = (p_k) \) is a sequence of strictly positive numbers and \(t_k = \frac{1}{p_k} \), for all \(k \in \mathbb{N} \).

We define the following vector valued multiplier sequence spaces:
\[
\ell_\infty(E_k, \Lambda, p) = \{ (x_k) : x_k \in E_k \text{ for all } k \in \mathbb{N} \text{ and } \sup_k (f_k(\gamma_k x_k))^{p_k} < \infty \},
\]
\[
c_0(E_k, \Lambda, p) = \{ (x_k) : x_k \in E_k \text{ for all } k \in \mathbb{N} \text{ and } (f_k(\gamma_k x_k))^{p_k} \to 0, \text{ as } k \to \infty \},
\]
\[
\ell_\infty(E_k, \gamma, p) = \{ (x_k) : x_k \in E_k \text{ for all } k \in \mathbb{N} \text{ and there exists } r > 0 \text{ such that } \sup_k (f_k(r\gamma_k x_k))^{p_k} t_k < \infty \},
\]
\[
c_0(E_k, \Lambda, p) = \{ (x_k) \in E_k \text{ for all } k \in \mathbb{N} \text{ and there exists } r > 0 \text{ such that } (f_k(r\gamma_k x_k))^{p_k} t_k \to 0, \text{ as } k \to \infty \}.
\]

Two sequence spaces \(E \) and \(F \) are said to be equivalent if there exists a sequence \(u = (u_k) \) of strictly positive numbers such that the mapping
\[
u : E \to F \text{ defined by } y = ux = (u_k x_k) \in F, \text{ whenever } (x_k) \in E,
\]
is one-to-one correspondence between \(E \) and \(F \). It is denoted by \(E \cong F(u) \) or simply \(E \cong F \) (see for instance Nakano [10]).

It is remarked by Lascarides [6] (Remark 3) that “If \(E \) is a sequence space paranormed (or normed) by \(g \) and \(E \cong F(u) \), then \(F \) is a sequence space paranormed (or normed) by \(g_u \) defined by \(g_u(y) = g(u^{-1}y), y \in F \).
Further it is noted by Lascarides [6] that “if \((p_k) \in \ell_\infty\), then \(c_0(p) \cong c_0\{u\}\), (as well as \(\ell_\infty(p) \cong \ell_\infty\{p\}\{u\}\), where \(u = (p_k^t)\)”.

For \(E, F\) two sequence spaces we define \(M(F, E)\) as follows:

\[
M(F, E) = \{ (\gamma_k) : (\gamma_k x_k) \in E \text{ for all } (x_k) \in F \},
\]

where \(\Lambda = (\gamma_k)\) is a multiplier sequence.

Lemma 1. A sequence space \(E\) is solid implies \(E\) is monotone.

Lemma 2. (Lascarides [6], Proposition 1) Let \(h = \inf p_k\) and \(H = \sup p_k\).

Then the following conditions are equivalent:

(i) \(H < \infty\) and \(h > 0\).

(ii) \(c_0(p) = c_0\) or \(\ell_\infty(p) = \ell_\infty\).

(iii) \(\ell_\infty\{p\} = \ell_\infty(p)\).

(iv) \(c_0\{p\} = c_0(p)\).

(v) \(\ell\{p\} = \ell(p)\).

3. Main Results

In this section we prove the results involving \(\ell_\infty\{E_k, \Lambda, p\}\) and \(c_0\{E_k, \Lambda, p\}\).

First we prove the following properties of the spaces \(\ell_\infty\{E_k, \Lambda, p\}\) and \(c_0\{E_k, \Lambda, p\}\).

Property 1. \(c_0\{E_k, \Lambda, p\}\) is a linear space for any sequence \(p = (p_k)\).

Proof. Let \(x \in c_0\{E_k, \Lambda, p\}\). Then there exists \(r > 0\) such that \((f_k(r \gamma_k x_k))^{p_k} t_k \to 0\), as \(k \to \infty\). Let \(\lambda \in C\). Without loss of generality we can take \(\lambda \neq 0\). Let \(\rho = r(|\lambda|)^{-1} > 0\), then we have

\[
(f_k(\gamma_k(\lambda x_k)\rho))^{p_k} t_k = (f_k(r \gamma_k x_k))^{p_k} t_k \to 0, \quad \text{as } k \to \infty.
\]

Therefore \(\lambda x \in c_0\{E_k, \Lambda, p\}\), for all \(\lambda \in C\) and for all \(x \in c_0\{E_k, \Lambda, p\}\).

Next we suppose that \(x, y \in c_0\{E_k, \Lambda, p\}\). Then there exist \(r_1, r_2 > 0\) such that

\[
(f_k(\gamma_k x_k r_1))^{p_k} t_k \to 0, \quad \text{as } k \to \infty.
\]
and
\[(f_k(\gamma_kykr_2))^{pk}t_k \to 0, \text{ as } k \to \infty.\]

Thus given \(\varepsilon > 0\), there exists \(k_1, k_2 > 0\) such that
\[(f_k(\gamma_kxkr_1))^{pk}t_k < \varepsilon p_k, \text{ for all } k \geq k_1\] (1)
and
\[(f_k(\gamma_kykr_2))^{pk}t_k < \varepsilon p_k, \text{ for all } k \geq k_2.\] (2)

Let \(r = r_1r_2(r_1 + r_2)^{-1}\) and \(k_0 = \max(k_1, k_2)\).

Then we have for all \(k \geq k_0\),
\[[f_k(\gamma_k(x_k + y_k)r)]^{pk} \leq [f_k(\gamma_kxkr_1)r_2(r_1 + r_2)^{-1} + f_k(\gamma_kykr_2)r_1(r_1 + r_2)^{-1}]^{pk} < \varepsilon p_k.\]

Hence \(x + y \in c_0\{E_k, \Lambda, p\}\).

Thus \(c_0\{E_k, \Lambda, p\}\) is a linear space.

In view of the techniques applied in proving Property 1, the proof of the following is a routine work.

Property 2. \(\ell_\infty\{E_k, \Lambda, p\}\) is linear for any sequence \(p = (p_k)\).

Theorem 1. If \(p \in \ell_\infty\) and each \(E_k\) is complete, then \(c_0\{E_k, \Lambda, p\}\) is a complete paranormed space, paranormed by
\[g(x) = \sup_k(f_k(\gamma_kx_kp_k^{-t_k})^{pk})^{\frac{1}{M}},\]
where \(M = \max(1, H), H = \sup_k p_k\).

Proof. Clearly, for any \(x \in c_0\{E_k, \Lambda, p\}\)
\[g(x) \geq 0, \quad g(\theta) = 0 \quad \text{and} \quad g(-x) = g(x).\]

Now, let \(x, y \in c_0\{E_k, \Lambda, p\}\). Then clearly \(g(x + y) \leq g(x) + g(y)\).

Now we check the continuity of scalar multiplication. It can be shown by standard techniques that \(\alpha \to 0, x \to \theta\) imply \(\alpha x \to \theta\) and \(\alpha\) fixed, \(x \to \theta\) imply \(\alpha x \to \theta\).

Next we show that \(\alpha \to 0\) and \(x\) fixed imply \(\alpha x \to \theta\).

We have \(g(\alpha x) = \sup_k(f_k(\gamma_k(\alpha x_k)p_k^{-t_k})^{pk})^{\frac{1}{M}}.\)
Now, \((x_k) \in c_0\{E_k, \Lambda, p\}\). Then there exists \(r > 0\) such that
\[
\min(1, r^H)(f_k(\gamma_k x_k))^{pk} t_k \leq (f_k(\gamma_k x_k))^{pk} t_k \to 0 \text{ as } k \to \infty.
\]
(since \(\min(1, r^H) \leq r^{pk}\) for all \(k \in N\))

\[
\Rightarrow (f_k(\gamma_k x_k p_k^{-t_k}))^{pk} t_k \to 0 \text{ as } k \to \infty.
\]

\[
\Rightarrow \text{Given } \epsilon > 0, \text{ there exists } k_0 \in N \text{ such that } (f_k(\gamma_k x_k p_k^{-t_k}))^{pk} t_k < \epsilon, \text{ for all } k > k_0.
\]

Since \(\alpha \to 0\), without loss of generality let \(|\alpha| < 1\), then we have
\[
(f_k(\gamma_k (\alpha x_k)p_k^{-t_k}))^{pk} t_k < \epsilon, \text{ for all } k > k_0.
\]

Again \(x \in c_0\{E_k, \Lambda, p\}\) implies there exists \(L < \infty\) such that
\[
(f_k(\gamma_k x_k p_k^{-t_k}))^{pk} t_k \leq L, \text{ for } k = 1, 2, 3, \ldots, k_0.
\]

For \(k = 1, 2, 3, \ldots, k_0\), let \(|\alpha|^{|\frac{1}{pk}|} < \delta(= \frac{\epsilon}{L})\), then we have
\[
(f_k(\gamma_k ((\alpha x_k)p_k^{-t_k}))^{pk} t_k < \epsilon, \text{ for all } k = 1, 2, 3, \ldots, k_0.
\]

Taking \(\alpha\) small enough, we have
\[
(f_k(\gamma_k (\alpha x_k)p_k^{-t_k}))^{pk} t_k < \epsilon, \text{ for all } k \in N.
\]

So, \(g(\alpha x) \to 0\) as \(\alpha \to 0\).

Hence \(g\) is a paranorm on \(c_0\{E_k, \Lambda, p\}\).

We now show that \(c_0\{E_k, \Lambda, p\}\) is complete under the paranorm \(g\). For this, let \((x^{(n)})\) be a Cauchy sequence in \(c_0\{E_k, \Lambda, p\}\). Then given \(\epsilon > 0\), there exists \(n_0 \in N\) such that
\[
g(x^{(n)} - x^{(m)}) < \epsilon, \text{ for all } n, m \geq n_0
\]
\[
\Rightarrow f_k(\gamma_k x_k^{(n)} p_k^{-t_k} - \gamma_k x_k^{(m)} p_k^{-t_k}) < e^{pk} t_k < \epsilon,
\]
for all \(n, m \geq n_0\) and for all \(k \in N\). \(3\)

We write \(z_k^{(n)} = \gamma_k x_k^{(n)} p_k^{-t_k}\), for all \(k \in N\).

Then \((z_k^{(n)})_{n \in N}\) is a Cauchy sequence in \(E_k\) for each \(k \in N\). Since \(E_k\)'s are complete there exists \(z_k \in E_k\) such that \(z_k^{(n)} \to z_k\) as \(n \to \infty\), for all \(k \in N\).
Since E_k’s are linear, we can express z_k as $z_k = \gamma_k x_k p_k^{-t_k}$ where $x_k \in E_k$. Let $x = (x_k)$.

Taking $m \to \infty$ in (3), we get

$$\sup_k (f_k(\gamma_k(x_k^{(n)} - x_k)p_k^{-t_k}))^{\frac{p_k}{t_k}} < \epsilon, \quad \text{for all } n \geq n_0.$$

$$\Rightarrow g(x^{(n)} - x) < \epsilon, \quad \text{for all } n \geq n_0.$$

$$\Rightarrow x^{(n)} \to x, \quad \text{as } n \to \infty. \quad (4)$$

Also (4) implies that $x^{(n)} - x \in c_0\{E_k, \Lambda, p\}$. Since $c_0\{E_k, \Lambda, p\}$ is linear, we have $x = (x^{(n)} - x) + x^{(n)} \in c_0\{E_k, \Lambda, p\}$.

Hence $c_0\{E_k, \Lambda, p\}$ is complete under the paranorm g.

Corollary 1. If $0 < \inf p_k \leq \sup p_k < \infty$, then $\ell_\infty\{E_k, \Lambda, p\}$ is paranormed by g.

Proof. In view of Theorem 1, we need only to check that $\alpha \to 0$ and x fixed imply $\alpha x \to 0$.

We have, $(g(\alpha x))^M \leq \sup_k |\alpha|^{p_k}(g(x))^M$.

Since $\alpha \to 0$, without loss of generality we can take $|\alpha| < 1$. Now if $\inf p_k = 0$, then the right side of the above inequality will be independent of α.

Hence the result.

Using Corollary 1 and following Theorem 1 one will get the following result.

Theorem 2. If $0 < \inf p_k \leq \sup p_k < \infty$ and each E_k is complete, then $\ell_\infty\{E_k, \Lambda, p\}$ is a complete paranormed space paranormed by g.

Proposition 3. The space $c_0\{E_k, \Lambda, p\}$ and $\ell_\infty\{E_k, \Lambda, p\}$ are normal.

Proof. Let x be an element of either of the spaces and $|\alpha_k| \leq 1$, for $k = 1, 2, 3, \ldots$.

Since $|\alpha_k|^{p_k} \leq \max(1, |\alpha_k|^H) \leq 1$, for all $k \in N$, so

$$(f_k(\gamma_k(\alpha_k x_k)r))^{p_k} t_k \leq (f_k(\gamma_k x_k r))^{p_k} t_k.$$

Thus $x \in X$ and $|\alpha_k| \leq 1$ for all $k \in N$ imply $\alpha x \in X$ where X is either $c_0\{E_k, \Lambda, p\}$ or $\ell_\infty\{E_k, \Lambda, p\}$.
Hence the result.

The next result follows immediately from Lemma 1 and Proposition 3.

Proposition 4. The spaces $c_0\{E_k, \Lambda, p\}$ and $\ell_\infty\{E_k, \Lambda, p\}$ are monotone.

Theorem 5. Let (p_k) be a given sequence of strictly positive real numbers. Then $(\gamma_k) \in (E,E)$ if and only if $(\gamma_k)^{p_k}) \in \ell_\infty$, where $E = c_0\{E_k, p\}$ or $\ell_\infty\{E_k, p\}$ or $c_0(E_k, p)$ or $\ell_\infty(E_k, p)$.

Proof. The sufficiency for all the cases is obvious.

For the necessity, for the case $E = \ell_\infty\{E_k, p\}$, suppose that $(\gamma_k)^{p_k}) \notin \ell_\infty$. Then there exists a subsequence $(\gamma_{k_i})^p$ such that $\gamma_{k_i} \rightarrow \infty$, as $i \rightarrow \infty$.

Then $|(\gamma_{k_i})^{p_{k_i}}| \geq (f_{k_i}(r\gamma_{k_i}x_{k_i}))^{p_k_{k_i}}$, for all $i \in N$.

Hence $(\gamma_k) \notin (\ell_\infty\{E_k, p\}, \ell_\infty\{E_k, p\})$.

Next for $E = c_0\{E_k, p\}$, for the necessity, suppose that (5) holds. Then one can find a sequence $(x_k) \in c_0\{E_k, p\}$ such that

Then $|(\gamma_{k_i})^{p_{k_i}}| \geq (f_{k_i}(r\gamma_{k_i}x_{k_i}))^{p_k_{k_i}}$, for all $i \in N$.

Thus $(\gamma_k) \notin (c_0\{E_k, p\}, c_0\{E_k, p\})$. As such we arrive at a contradiction.

Hence $(\gamma_k)^{p_k}) \in \ell_\infty$ is necessary for $(\gamma_k) \in (\ell_\infty\{E_k, p\}, \ell_\infty\{E_k, p\})$.

The other cases can be proved similarly.

The following result follows from Lemma 2 and Theorem 5.

Corollary 2. $M(E, E) = \ell_\infty$, for $E = c_0\{E_k, p\}$ or $\ell_\infty\{E_k, p\}$ or $c_0(E_k, p)$ or $\ell_\infty(E_k, p)$ if and only if $h > 0$ and $H < \infty$.

From Lemma 2 and Corollary 2, the following result follows.

Corollary 3. Let $h = \inf p_k$ and $H = \sup p_k$. Then the following are equivalent:
(i) $H < \infty$ and $h > 0$.
(ii) $\ell_\infty\{E_k, \Lambda, p\} = \ell_\infty(E_k, \Lambda, p)$.
(iii) $c_0\{E_k, \Lambda, p\} = c_0(E_k, \Lambda, p)$.

Theorem 6. If $p, q \in \ell_\infty$. Then $\ell_\infty\{E_k, \Lambda, p\} \subseteq \ell_\infty\{E_k, \Lambda, q\}$ if and only if

$$\liminf_k q_k (M p_k)^{-\frac{q_k}{p_k}} > 0$$

(6)

for every integer $M > 1$.

Proof. Sufficiency. Let $x \in \ell_\infty\{E_k, \Lambda, p\}$. Then there exists $r > 0$ such that $\sup k f_k(\gamma_k x_k r)^{p_k} t_k < \infty$. So there exists $M = M(r) > 1$ such that

$$f_k(\gamma_k x_k r)^{p_k} \leq M p_k \text{ for all } k \in \mathbb{N}. \quad (7)$$

Also (6) implies there exists $\alpha > 0$ such that

$$q_k (M p_k)^{-\frac{q_k}{p_k}} > \alpha$$

(8)

for all sufficiently large k.

Now, $(f_k(\gamma_k x_k r))^{q_k} q_k^{-1} \leq (M p_k)^{\frac{q_k}{p_k}} q_k^{-1}$ [by (7)]

$$< \alpha^{-1}, \text{ for sufficiently large } k \text{ [by (8)].}$$

So, $(x_k) \in \ell_\infty\{E_k, \Lambda, q\}$.
Hence $\ell_\infty\{E_k, \Lambda, p\} \subseteq \ell_\infty\{E_k, \Lambda, q\}$.

Necessity. Suppose $\ell_\infty\{E_k, \Lambda, p\} \subseteq \ell_\infty\{E_k, \Lambda, q\}$ but there exists $M_0 > 1$ such that

$$\liminf_k q_k (M_0 p_k)^{-\frac{q_k}{p_k}} = 0.$$

Then there exists $k_1 < k_2 < k_3 < \cdots$ such that

$$q_{k_i} (M_0 p_{k_i})^{-\frac{q_{k_i}}{p_{k_i}}} < \frac{1}{i-1}, i = 1, 2, 3, \ldots.$$

Let $H' = \sup_k q_k < \infty$. Define the sequence $x = (x_k)$ as follows:

$$x_k = \begin{cases} \frac{(M_0 p_k)^\frac{q_k}{p_k}}{q_k} I_k, & k = k_i, \\ \theta_k, & \text{otherwise,} \end{cases}$$
where θ_k is the zero element and I_k the identity of E_k for all $k \in N$.

Then $(f_k(\gamma_k x_k 1))^{p_k=p_k-1} = M_0$, for every $k = k_i$, $i = 1, 2, 3, \ldots$.

Now $(x_k) \in \ell_\infty\{E_k, \Lambda, p\}$, but

$$(f_k(\gamma_k x_k r))^{q_k} q_k^{-1} = (M_0 p_k)^{q_k} r^{p_k} q_k^{-1}, \quad \text{for every } k = k_i, i = 1, 2, 3, \ldots$$

and for every $r > 0$,

$$> i \min(1, r^{H'}) .$$

Therefore $(x_k) \notin \ell_\infty\{E_k, \Lambda, q\}$. Hence we arrive at a contradiction.

Thus (6) holds.

Theorem 7. Let $p, q \in \ell_\infty$. Then $c_0\{E_k, \Lambda, p\} \subseteq c_0\{E_k, \Lambda, q\}$ if and only if

$$\lim_{M} \limsup_{k} q_k^{-1}(M^{-1} p_k)^{q_k} = 0 .$$

(9)

Proof. Let $I(M) = \limsup_{k} q_k^{-1}(M^{-1} p_k)^{q_k}$, for all $M > 1$ and $I(M, k) = q_k^{-1}(M^{-1} p_k)^{q_k}$.

By (9) given $\epsilon > 0$, there exists $M_0 > 1$ such that

$$I(M) < \epsilon, \text{ for all } M > M_0 .$$

(10)

Let $x \in c_0\{E_k, \Lambda, p\}$ and M^* be fixed with $M^* > M_0$. Then there exists $r > 0$ and $k_0 \in N$ such that

$$(f_k(\gamma_k x_k r))^{p_k=p_k-1} < M^{*-1}, \text{ for all } k > k_0 .$$

Now, $(f_k(\gamma_k x_k r))^{q_k} q_k^{-1} = q_k^{-1}(M^{*-1} p_k)^{q_k} < I(M^*) < \epsilon, \text{ for all } k > k_0$. [by (10)]

So, $x \in c_0\{E_k, \Lambda, p\}$.

Hence $c_0\{E_k, \Lambda, p\} \subseteq c_0\{E_k, \Lambda, q\}$.

Conversely suppose that $c_0\{E_k, \Lambda, p\} \subseteq c_0\{E_k, \Lambda, q\}$ but (9) does not hold.

Then we have two cases:

(i) $I(M) = \infty$ for every integer $M > 1$.

(ii) There exists $M_0 > 1$ such that $I(M) < \epsilon$, for all $M > M_0$ and $\lim_M I(M) > 0$.

Case (i) Consider a strictly increasing sequence \((k_i)\) of positive integers such that
\[I(i + 1, k_i) > i, \quad i = 1, 2, 3, \ldots \]
Define \((x_k)\) as follows:
\[
x_k = \begin{cases}
\frac{(i+1)^{i^k}p_kI_k}{|\gamma_k|}, & k = k_i, \\
\theta_k, & \text{otherwise.}
\end{cases}
\]
So, \((f_k(\gamma_kx_k1))^{p_k}p_k^{-1} = (i + 1)^{-1}, \) for all \(k = k_i, \ i = 1, 2, 3, \ldots\)
Hence \((x_k) \in c_0\{E_k, \Lambda, p\}\).
Also, \((f_k(\gamma_kx_kr))^{q_k}q_k^{-1} = r^{q_k}q_k^{-1}p_kr_k(i + 1)^{-\frac{q_k}{p_k}} \geq I(i + 1, k_i) \min(1, r^{H'})\), for \(k = k_i\) and \(r > 0\)
\[
(H' = \sup_k q_k < \infty) > i \min(1, r^{H'}).
\]
Therefore \((x_k) \notin c_0\{E_k, \Lambda, q\}\). Hence we arrive at a contradiction.

Case (ii) Suppose \(\lim_{M > M_0} I(M) = 2a > 0\). Therefore there exists a strictly increasing sequence \((k_i)\) of positive integers such that
\[I(M_0 + i - 1, k_i) > a, \quad i = 1, 2, 3, \ldots \]
We define a sequence \(x = (x_k)\) as follows:
\[
x_k = \begin{cases}
\frac{(M_0+i-1)^{i^k}p_kI_k}{|\gamma_k|}, & k = k_i, \\
\theta_k, & \text{otherwise.}
\end{cases}
\]
Then \((f_k(\gamma_kx_k1))^{p_k}p_k^{-1} = (M_0 + i - 1)^{-1}, \) for all \(k = k_i, i = 1, 2, 3, \ldots\)
So, \((x_k) \in c_0\{E_k, \Lambda, p\}\).
Also for \(k = k_i, i = 1, 2, 3, \ldots\), we have
\[
(f_k(\gamma_kx_kr))^{q_k}q_k^{-1} = r^{q_k}q_k^{-1}p_kr_k(M_0 + i - 1)^{-\frac{q_k}{p_k}} \geq I(M_0 + i - 1, k_i) \min(1, r^{H'}) > a \min(1, r^{H'}).
\]
Thus \((x_k) \notin c_0\{E_k, \Lambda, q\}\). Once again we arrive at a contradiction. Therefore \(\lim_M I(M) = 0\).

This completes the proof of the theorem.

Remark. Taking \(E_k\)'s as normed linear spaces, normed by \(\|\cdot\|_{E_k}\), one will get the analogue of the above results for \(\ell_\infty\{E_k, \Lambda, p\}\) and \(c_0\{E_k, \Lambda, p\}\). These spaces are paranormed by

\[f(x) = \sup_k \{\|\gamma_k x_k\|_{E_k} p_{-t_k}^{\frac{p_k}{p}}\}. \]

4. Duals of the Above Sequence Spaces

By \(\ell_1\) we denote the class of \textit{absolutely summable} sequence spaces of complex terms. The \(\alpha\)-dual i.e. the Köthe-Toeplitz dual of a sequence space \(E\) of complex terms is defined as

\[E^\alpha = \{(y_k) \in w : (x_k y_k) \in \ell_1 \text{ for all } (x_k) \in E\}. \]

For any normed space \(E\), the set of all continuous linear functions on \(E\) is called its continuous dual, denoted by \(E^*\). Clearly \(E^*\) is a linear space.

Throughout this section we take \(E_k\)'s to be normed linear spaces, normed by \(\|\cdot\|_{E_k}\) for all \(k \in N\). Then the Köthe-Toeplitz dual of \(Z(E_k)\) is defined as

\[[Z(E_k)]^\alpha = \{(y_k) : y_k \in E_k^* \text{ for all } k \in N \text{ and } (\|x_k\|_{E_k} \|y_k\|_{E_k^*}) \in \ell_1\}. \]

The following well-known result will be used for establishing the result of this section.

\textbf{Lemma 3.} Let \(p_k > 0\) for all \(k \in N\). Then

(i) \([c_0(p)]^\alpha = M_0(p) = \bigcup_{J \in N} \{(a_k) : \sum_{k=1}^{\infty} |a_k| J^{-t_k} < \infty\}\).

(ii) \([\ell_\infty(p)]^\alpha = M_\infty(p) = \bigcap_{J \in N} \{(a_k) : \sum_{k=1}^{\infty} |a_k| J^{t_k} < \infty\}\).

\textbf{Theorem 8.} Let \(p_k > 0\) for all \(k \in N\). Then

(i) \([c_0(E_k, \Lambda, p)]^\alpha = \bigcup_{J \in N} \{(a_k) : \sum_{k=1}^{\infty} \|\gamma_k^{-1} a_k\|_{E_k^*} J^{-t_k} < \infty\}\).
(ii) $[\ell_\infty(E_k, \Lambda, p)]^\alpha = \bigcap_{J \in \mathbb{N}} \{ (a_k) : \sum_{k=1}^{\infty} \| \gamma_k^{-1} a_k \|_{E_k^*} J^k < \infty \}$.

(iii) $[c_0(E_k, \Lambda, p)]^\alpha = \bigcup_{J \in \mathbb{N}} \{ (a_k) : \sum_{k=1}^{\infty} p_k^{-1} \| a_k \|_{E_k^*} J^k < \infty, \text{ for } r > 0 \}$.

(iv) $[\ell_\infty(E_k, \Lambda, p)]^\alpha = \bigcap_{J \in \mathbb{N}} \{ (a_k) : \sum_{k=1}^{\infty} p_k^{-1} \| a_k \|_{E_k^*} J^k < \infty, \text{ for } r > 0 \}$.

Proof. The proof follows from Lemma 3 and the following expressions:

$$\sum_{k=1}^{\infty} \| x_k \|_{E_k} \| a_k \|_{E_k^*} = \sum_{k=1}^{\infty} \| \gamma_k x_k \|_{E_k} \| \gamma_k^{-1} a_k \|_{E_k^*}$$

$$= \sum_{k=1}^{\infty} \| r \gamma_k x_k t_k \|_{E_k} \| r^{-1} \gamma_k^{-1} p_k t_k a_k \|_{E_k^*}$$

Acknowledgment

The authors thank the referees for their constructive comments on the first draft of the article.

References

Mathematical Sciences Division, Institute of Advanced Study in Science and Technology, Khanapara, Guwahati - 781 022, ASSAM, INDIA.

E-mail: tripathybc@yahoo.com
E-mail: tripathybc@rediffmail.com