SOME COEFFICIENT INEQUALITIES FOR CERTAIN
SUBCLASSES OF ANALYTIC FUNCTIONS
WITH RESPECT TO k-SYMMETRIC POINTS

BY
ZHI-GANG WANG, CHUN-YI GAO AND SHAO-MOU YUAN

Abstract. In the present paper, the authors introduce two new subclasses $M^{(k)}(\alpha)$ and $N^{(k)}(\alpha)$ of analytic functions with respect to k-symmetric points. Some coefficient inequalities for functions belonging to these classes and their subclasses with positive coefficients are provided.

1. Introduction

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$.

Let $M(\alpha)$ be the subclass of A consisting of functions $f(z)$ which satisfy the inequality

$$\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} < \alpha, \quad (z \in U),$$

for some $\alpha (\alpha > 1)$. And let $N(\alpha)$ be the subclass of A consisting of functions $f(z)$ which satisfy the inequality

$$\text{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} < \alpha, \quad (z \in U),$$
for some α ($\alpha > 1$). The classes $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$ were introduced and investigated recently by Owa and Nishiwaki [1] (see also Srivastava and Attiya [2]).

Motivated by $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$, we introduce the following two subclasses of analytic functions with respect to k-symmetric points, and obtain some interesting results.

A function $f(z) \in A$ is in the class $\mathcal{M}^{(k)}(\alpha)$ if
\[
\text{Re} \left\{ \frac{zf'(z)}{f_k(z)} \right\} < \alpha, \quad (z \in \mathcal{U}),
\]
where $\alpha > 1$, $k \geq 1$ is a fixed positive integer and $f_k(z)$ is defined by the following equality
\[
f_k(z) = \frac{1}{k} \sum_{\nu=0}^{k-1} \varepsilon^{-\nu} f(\varepsilon^\nu z), \quad (\varepsilon^k = 1; \ z \in \mathcal{U}). \quad (1.1)
\]
And a function $f(z) \in A$ is in the class $\mathcal{N}^{(k)}(\alpha)$ if and only if $zf'(z) \in \mathcal{M}^{(k)}(\alpha)$.

In the present paper, we shall provide some coefficient inequalities for functions belonging to the classes $\mathcal{M}^{(k)}(\alpha)$ and $\mathcal{N}^{(k)}(\alpha)$ and their subclasses with positive coefficients.

2. Main Results

Theorem 1. Let $\alpha > 1$. If $f(z) \in A$ satisfies
\[
\sum_{n=1}^{\infty} \left[(nk + 1) + |nk + 1 - 2\alpha| \right] |a_{nk+1}| + \sum_{n=2; n \neq lk+1}^{\infty} 2n |a_n| \leq 2(\alpha - 1), \quad (2.1)
\]
then $f(z) \in \mathcal{M}^{(k)}(\alpha)$.

Proof. Suppose that $f(z) \in A$ with $\alpha > 1$, it suffices to show that
\[
\left| \frac{zf'(z)}{f_k(z)} \right| < \left| \frac{zf'(z)}{f_k(z)} - 2\alpha \right|, \quad (z \in \mathcal{U}).
\]

Let M be denoted by
\[
M := \left| zf'(z) \right| - \left| zf'(z) - 2\alpha f_k(z) \right|
\]
\[
= \left| z + \sum_{n=2}^{\infty} na_n z^n \right| - \left| z + \sum_{n=2}^{\infty} na_n z^n - 2\alpha z - 2\alpha \sum_{n=2}^{\infty} a_n b_n z^n \right|,
\]
where
\[b_n = \frac{1}{k} \sum_{\nu=0}^{k-1} \varepsilon^{(n-1)\nu}, \quad (\varepsilon^k = 1). \]

Thus, for \(|z| = r < 1 \), we have
\[
M \leq r + \sum_{n=2}^{\infty} n |a_n| r^n - \left[(2\alpha - 1)r - \sum_{n=2}^{\infty} |n - 2\alpha b_n| |a_n| r^n \right] < \left\{ \sum_{n=2}^{\infty} |n + |n - 2\alpha b_n|| |a_n| - 2(\alpha - 1) \right\} r. \tag{2.2}
\]

From the definition of \(b_n \), we know
\[
b_n = \begin{cases}
1, & n = lk + 1, \\
0, & n \neq lk + 1.
\end{cases} \tag{2.3}
\]

Substituting (2.3) into inequality (2.2), we get
\[
M < \left\{ \sum_{n=1}^{\infty} [(nk + 1) + |nk + 1 - 2\alpha|] |a_{nk+1}| + \sum_{n=2}^{\infty} 2n |a_n| - 2(\alpha - 1) \right\} r.
\]

From (2.1), we know that \(M < 0 \). Thus we have
\[
\text{Re} \left\{ \frac{zf'(z)}{f_k(z)} \right\} < \alpha, \quad (z \in \mathcal{U}),
\]
that is \(f(z) \in \mathcal{M}^{(k)}(\alpha) \). This completes the proof of Theorem 1.

Similarly, for the class \(\mathcal{N}^{(k)}(\alpha) \), we have

Corollary 1. Let \(\alpha > 1 \). If \(f(z) \in \mathcal{A} \) satisfies
\[
\sum_{n=1}^{\infty} (nk + 1)(nk + 1) + |nk + 1 - 2\alpha| |a_{nk+1}| + \sum_{n=2}^{\infty} 2n^2 |a_n| \leq 2(\alpha - 1),
\]
then \(f(z) \in \mathcal{N}^{(k)}(\alpha) \).

We now provide the necessary and sufficient coefficient conditions for the following two classes \(\mathcal{M}^{(k)}_1(\alpha) \) and \(\mathcal{N}^{(k)}_1(\alpha) \), which are subclasses with positive
coefficients of the classes $\mathcal{M}^{(k)}(\alpha)$ and $\mathcal{N}^{(k)}(\alpha)$, respectively.

$$\mathcal{M}_1^{(k)}(\alpha) = \left\{ f(z) \in \mathcal{M}^{(k)}(\alpha) : f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \text{ with } a_n \geq 0 \ (n \geq 2) \right\},$$

and

$$\mathcal{N}_1^{(k)}(\alpha) = \left\{ f(z) \in \mathcal{N}^{(k)}(\alpha) : f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \text{ with } a_n \geq 0 \ (n \geq 2) \right\}.$$

Theorem 2. Let $k \geq 2$, $1 < \alpha \leq k + 1$ and $f(z) \in A$, then $f(z) \in \mathcal{M}_1^{(k)}(\alpha)$ if and only if

$$\sum_{n=2}^{\infty} na_n - \alpha \sum_{l=1}^{\infty} a_{lk+1} \leq \alpha - 1.$$

Proof. In view of Theorem 1, we need only to prove the necessity. Let

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{M}_1^{(k)}(\alpha),$$

then $a_n \geq 0$ for $n \geq 2$ and

$$\text{Re} \left\{ \frac{zf'(z)}{f_k(z)} \right\} < \alpha,$$

this is equivalent to

$$\left| \frac{zf'(z)}{f_k(z)} \right| < \left| \frac{zf'(z)}{f_k(z)} - 2\alpha \right|,$$

or equivalently,

$$|zf'(z)| < |zf'(z) - 2\alpha f_k(z)|.$$

Hence

$$\left| 1 + \sum_{n=2}^{\infty} na_n z^{n-1} \right| < \left| 1 + \sum_{n=2}^{\infty} na_n z^{n-1} - 2\alpha - 2\alpha \sum_{l=1}^{\infty} a_{lk+1} z^l \right|.$$

Setting $z \to 1^-$, noting that $a_n \geq 0$ for $n \geq 2$ and $\alpha > 1$, we have

$$1 + \sum_{n=2}^{\infty} na_n \leq 2\alpha - 1 + 2\alpha \sum_{l=1}^{\infty} a_{lk+1} - \sum_{n=2}^{\infty} na_n,$$

that is,

$$\sum_{n=2}^{\infty} na_n - \alpha \sum_{l=1}^{\infty} a_{lk+1} \leq \alpha - 1.$$
Hence the proof of Theorem 2 is complete.

Similarly, for the class $N^{(k)}_1(\alpha)$, we have

Corollary 2. Let $k \geq 2$, $1 < \alpha \leq k + 1$ and $f(z) \in \mathcal{A}$, then $f(z) \in N^{(k)}_1(\alpha)$ if and only if

$$\sum_{n=2}^{\infty} n^2 a_n - \alpha \sum_{l=1}^{\infty} (lk + 1)a_{lk+1} \leq \alpha - 1.$$

Acknowledgments

This work was supported by the Scientific Research Fund of Hunan Provincial Education Department and the Hunan Provincial Natural Science Foundation (No. 05JJ30013) of People’s Republic of China. The authors would like to thank Professor Ming-Sheng Liu for his valuable suggestions and the referees for their careful reading of and constructive suggestions for the original manuscript.

References
