Abstract. The purpose of present note is to study the totally umbilical semi-invariant submanifolds of a nearly Kenmotsu manifold. In this note we have discussed the integrability of invariant and anti-invariant distributions and consequently obtained a classification for the totally umbilical semi-invariant submanifold of a nearly Kenmotsu manifold.

1. Introduction

I. Mihai et al. [7] generalized the notion of Kenmotsu manifold. In fact they introduced the structure of f-Kenmotsu manifold. Several Authors studied the semi-invariant submanifold of Kenmotsu manifolds and f-Kenmotsu manifolds, a generalized version of Kenmotsu manifold, it is therefore worthwhile to study the semi-invariant submanifolds of a nearly Kenmotsu manifold. An almost contact metric manifold $\bar{M}(\phi, \xi, \eta, g)$ satisfying $(\bar{\nabla}_X \phi)X = -\eta(X)\phi X$, is called a nearly Kenmotsu manifold ([6]), where $\bar{\nabla}$ is the Riemannian connection corresponding to the contact metric on \bar{M}. Obviously a nearly Kenmotsu structure on an almost contact metric manifold is given by a slightly weaker condition than that of a Kenmotsu manifold. The study of geometry of CR-submanifolds of a Kähler manifold was initiated by A. Bejancu [1]. In particular the totally umbilical and totally geodesic CR-submanifolds of a Kähler manifold have also been extensively studied. Later, Chen [5] classified totally umbilical CR-submanifold of Kähler manifolds. In the present note we obtain a characterization of totally umbilical semi-invariant submanifolds of a nearly Kenmotsu manifold.
2. Preliminaries

Let \bar{M} be a $2n+1$ dimensional nearly Kenmotsu manifold with structure tensors (ϕ, ξ, η, g), then they satisfy
\begin{align}
\phi^2 X &= -X + \eta(X)\xi, \quad \phi(\xi) = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1, \\
\eta(\phi_X) &= 0, \quad \eta(\xi) = 1,
\end{align}
\tag{2.1}
\forall X, Y \in T\bar{M}.

An m-dimensional submanifold M of \bar{M} is said to be a semi-invariant submanifold if there exist a pair of orthogonal distributions (D, D^\perp) satisfying the conditions
(i) $TM = D \oplus D^\perp \oplus \langle \xi \rangle$,
(ii) the distribution D is invariant by ϕ, i.e., $\phi D_x = D_x$, $\forall x \in M$,
(iii) the distribution D^\perp is anti-invariant i.e., $\phi D^\perp_x \subseteq T^\perp_x M$, $x \in M$,
where $\langle \xi \rangle$ is the distribution spanned by structure vector field ξ.

Let TM denote the tangent bundle on M. The orthogonal complement of ϕD^\perp in the normal bundle $\gamma(M)$ is an invariant subbundle of $\gamma(M)$ under ϕ and denoted by μ. For $U, V \in TM$ and $N \in \gamma(M)$ the transform ϕU and ϕN are decomposed into tangential and normal parts respectively as
\begin{align}
\phi U &= PU + FU, \\
\phi N &= tN + fN.
\end{align}
\tag{2.4}
\tag{2.5}

Here it is easy to observe that $PU \in D$, $FU \in \phi D^\perp$, $tN \in D^\perp$ and $fN \in \mu$. Similarly denoting by $P_U V$ and $Q_U V$ the tangential and normal parts of $(\nabla_U \phi)V$ and making use of equations (2.4), (2.5), the Gauss and Weingarten formulae, the following equation may easily obtained
\begin{align}
P_U V &= (\nabla_U P)V - A_{FU} U - th(U, V), \\
Q_U V &= (\nabla_U F)V + h(U, PV) - fh(U, V),
\end{align}
\tag{2.6}
\tag{2.7}

where the covariant derivatives of P and F are defined by
\begin{align}
(\nabla_U P)V &= \nabla_U PV - P\nabla_U V, \\
(\nabla_U F)V &= \nabla_U^F V - F\nabla_U V,
\end{align}
\tag{2.8}
\tag{2.9}
\(\nabla, \nabla^\perp\) are symbols used for connections on \(TM\) and \(\gamma M\) respectively while \(h\) and
\(A_N\) denote the second fundamental forms related by
\(g(h(U, V), N) = g(A_N U, V),\)
where \(g\) is the Riemannian metric on \(M\) as well as on \(\bar{M}\).

3. Semi-Invariant Submanifolds of a Nearly Kenmotsu Manifold

In order to develop the proof of the main theorem we start with the following preparatory results.

Proposition 3.1. Let \(M\) be a semi-invariant submanifold of a nearly Kenmotsu manifold \(\bar{M}\) with \(h(X, \phi X) = 0\) for each \(X \in D\). If \(D\) is integrable, then each leaf of the invariant distribution \(D\) is totally geodesic in \(M\) as well as in \(\bar{M}\).

Proof. For \(X, Y \in D\), the Gauss equation gives

\[
h(X, \phi Y) + h(\phi X, Y) = (\nabla_X \phi)Y + (\nabla_Y \phi)X + \phi(\nabla_X Y + \nabla_Y X) - (\nabla_X \phi Y + \nabla_Y \phi X).
\]

Using \(h(X, \phi X) = 0\) and nearly Kenmotsu character on \(\bar{M}\), we get

\[
\phi(\nabla_X Y + \nabla_Y X) - (\nabla_X \phi Y + \nabla_Y \phi X) = 0
\]
or,

\[
\phi^2(\nabla_X Y + \nabla_Y X) - \phi(\nabla_X \phi Y + \nabla_Y \phi X) = 0.
\]

In view of (2.1) the above equations becomes

\[
\phi(\nabla_X \phi Y + \nabla_Y \phi X) = -\nabla_X Y - \nabla_Y X + \eta(\nabla_X Y) + \eta(\nabla_Y X) - 2h(X, Y). \quad (3.1)
\]

On the other hand, from equation (2.7) we have \(F\nabla_X X = fh(X, X)\) from which one gets

\[
\nabla_X X \in D \text{ and } h(X, X) \in \phi D^\perp. \quad (3.2)
\]

Replacing \(X\) by \(X + Y\) in the first part of the above observation we get \(\nabla_X Y + \nabla_Y X \in D\). Now taking account of the integrability of \(D\), it follows that

\[
\nabla_X Y \in D. \quad (3.3)
\]

As, \(D\) is integrable, Frobenius theorem guarantees that \(M\) is foliated by leaves of \(D\). Combining this fact with (3.3), we conclude that leaves of \(D\) are totally...
geodesic in M. Moreover, making use of (3.3) and (3.1), we get $h(X,Y) = 0$, proving the assertion completely.

In case of totally umbilical semi-invariant submanifold of a nearly Kenmotsu manifold the above proposition yields.

Corollary 3.1. Let M be a totally umbilical semi-invariant submanifold of a nearly Kenmotsu manifold \bar{M}. Then M is totally geodesic in \bar{M}, if D is integrable.

With regard to the anti-invariant distribution, we establish the following.

Proposition 3.2. Let M be a totally umbilical semi-invariant submanifold of a nearly Kenmotsu manifold \bar{M} and $\nabla_Z \xi \in \langle \xi \rangle$ for each $Z \in D^\perp$, then anti-invariant distribution D^\perp is integrable and its leaves are totally geodesic in M.

Proof. Taking $Z \in D^\perp$ and making use of the fact that \bar{M} is nearly Kenmotsu manifold and that M is totally umbilical, equation (2.6) yields that

$$-P \nabla_Z Z = g(H,FZ)Z + g(Z,Z)tH,$$

where H is the mean curvature vector. Obviously the right hand side of the above equation belongs to D^\perp where as the left hand side belongs to D, implying that

$$g(H,FZ)Z + g(Z,Z)tH = 0,$$

$$\nabla_Z Z \in D^\perp. \quad (3.5)$$

Equation (3.4) has solution if either

(a) $\dim D^\perp = 1$, or

(b) $H \in \mu$.

If $\dim D^\perp = 1$, then on using (3.5) it follows that D^\perp is integrable and its leaves are totally geodesic in M, otherwise we simplify equation (2.6) and obtain the equations $P_X Z = (\nabla_X P)Z$ and $P_Z X = (\nabla_Z P)X$ for $X \in D$. Adding these equations and taking into account that M is nearly Kenmotsu, we get

$$\nabla_Z PX = P(\nabla_Z X + \nabla_X Z),$$

that is $\nabla_Z PX \in D$. The observation $\nabla_Z PX \in D$ under the assumption implies $\nabla_Z W \in D^\perp, \forall Z, W \in D^\perp$. Thus D^\perp is integrable and its leaves are totally geodesic in M. This completes the proof.
We are now ready to prove the main theorem.

Theorem 3.1. Let M be a totally umbilical semi-invariant submanifold of a nearly Kenmotsu manifold \bar{M}. Then at least one of the following is true:

(i) M is anti-invariant.
(ii) M is totally geodesic.
(iii) $\dim D^\perp = 1$ and D is not integrable.

Proof. If $D = 0$ then, by definition, M is anti-invariant, which is case (i).
If $D \neq 0$ and integrable, by corollary (3.1) M is totally geodesic which accounts for case (ii). Suppose now D is not integrable and $H \in \mu$, then by virtue of (3.2) M is again totally geodesic. If however, $H \notin \mu$, then equation (3.4) has solution if and only if $\dim D^\perp = 1$ which establishes case (iii). This completes the proof.

It is observed in our preceeding discussion that the integrability of the invariant distribution $D \neq 0$ plays an important role in the geometry of semi-invariant submanifold of nearly Kenmotsu manifold, as the anti-invariant distribution on a totally umbilical semi-invariant submanifold under the condition $\nabla_Z \xi \in \langle \xi \rangle$ $\forall Z \in D^\perp$ is integrable. Thus if we assume that D is integrable, then by Corollary 3.1 its leaves will be totally geodesic in M. Thus we have:

Theorem 3.2. Let M be a totally umbilical semi-invariant submanifold of a nearly Kenmotsu manifold and $\nabla_Z \xi \in \langle \xi \rangle$ for each $Z \in D^\perp$, then M is locally a Riemannian product of the leaves of the distributions if and only if D is integrable.

References

Department of Mathematics, Aligarh Muslim University, Aligarh-202 002, India.
E-mail: viqarster@gmail.com
E-mail: ali_mrj@yahoo.co.uk