ON LEFT DERIVATIONS OF BCI-ALGEBRAS

BY

HAMZA A. S. ABUJABAL AND NORA O. AL-SHEHRI

Abstract. In the present paper, we introduce the notion of left derivation of a BCI-algebra and investigate some related properties. A condition for left derivation to be regular is given. Finally, we give a characterization of a p-semisimple BCI-algebra which admits left derivation.

1. Introduction

In [3], Y. B. Jun and X. L. Xin applied the notion of derivation in ring and near-ring theory to BCI-algebras, and they also introduced a new concept called a regular derivation in BCI-algebras. They investigated some of its properties, defined a d-invariant ideal and gave conditions for an ideal to be d-invariant. In non-commutative rings, the notion of derivations is extended to α-derivations, left derivations and central derivations. The properties of α-derivations and central derivations were discussed in several papers with respect to the ring structures. For left derivations, M. Brešar and J. Vukman [2] used them to give some results in prime and semi-prime rings. For skew polynomial rings, all left derivations are obtained in a similar way to a polynomial rings (see A. Nakajima and M. Sapanci [8]). In [10], J. Zhan and Y. L. Liu introduced the notion of f-derivations of BCI-algebras. The objective of this paper is to define left derivation on BCI-algebras and then investigate a regular left derivations. Finally, we study left derivations on p-semisimple BCI-algebras.
2. Preliminaries

Let X be a non-empty set with a binary operation $*$ and a constant 0. The system $(X, *, 0)$ is called a BCI-algebra, if it satisfies the following axioms for all $x, y, z \in X$:

- **BCI-1** $(x * y) * (x * z) * (z * y) = 0$,
- **BCI-2** $(x * (x * y)) * y = 0$,
- **BCI-3** $x * x = 0$,
- **BCI-4** $x * y = 0$ and $y * x = 0$ imply $x = y$.

Define a binary relation \leq on X by putting $x \leq y$ if and only if $x * y = 0$. Then the system $(X, *, 0)$ is a partially ordered set. A BCI-algebra X satisfying $0 \leq x$ for all $x \in X$, is called BCK-algebra. A non-empty subset I of a BCI-algebra X is said to be an ideal of X if it satisfies for all $x, y \in X$:

1. $0 \in I$,
2. $x * y \in I$ and $y \in I$ imply $x \in I$.

Any ideal I has the property $y \in I$ and $x \leq y$ imply $x \in I$.

In any BCI-algebra X, the following properties hold for all $x, y, z \in X$:

1. $x * 0 = x$.
2. $(x * y) * z = (x * z) * y$.
3. $0 * (x * y) = (0 * x) * (0 * y)$.
4. $x * (x * y) = x * y$.
5. $((x * z) * (y * z)) * (x * y) = 0$.
6. $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.
7. $x * 0 = 0$ implies $x = 0$.

For a BCI-algebra X, we denote by $X_+ = \{x \in X \mid 0 \leq x\}$, the BCK-part of X and by $G(X) = \{x \in X \mid 0 * x = x\}$, the BCI-G-part of X. If $X_+ = \{0\}$, then X is called a p-semisimple BCI-algebra. In a p-semisimple BCI-algebra X, the following hold for all $x, y, z \in X$:

8. $(x * z) * (y * z) = x * y$.
9. $0 * (0 * x) = x$.
10. $x * (0 * y) = y * (0 * x)$.
11. $x * y = 0$ implies $x = y$.
(12) \(x * a = x * b\) implies \(a = b\).

(13) \(a * x = b * x\) implies \(a = b\).

(14) \(a * (a * x) = x\).

Let \(X\) be a \(p\)-semisimple \(BCI\)-algebra. We define addition \(+\) as \(x + y = x * (0 * y)\), for all \(x, y \in X\). Then \((X, +)\) be an abelian group with identity 0 and \(x - y = x * y\). Conversely, let \((X, +)\) be an abelian group with identity 0 and \(x - y = x * y\). Then \(X\) is a \(p\)-semisimple \(BCI\)-algebra and \(x + y = x * (0 * y)\), for all \(x, y \in X\) (see [5]). We denote \(x \land y = y * (y * x)\), \(0 * (0 * x) = a_x\), and

\[
L_P(X) = \{a \in X \mid x * a = 0 \text{ implies } x = a, \forall x \in X\}.
\]

For any \(x \in X\), \(V(a) = \{a \in X \mid a * x = 0\}\) is called the branch of \(X\) with respect to \(a\). We have \(x * y \in V(a * b)\), whenever \(x \in V(a)\) and \(y \in V(b)\), for all \(x, y \in X\) and all \(a, b \in L_P(X)\). Note that \(L_P(X) = \{x \in X \mid a_x = x\}\) which is the \(p\)-semisimple part of \(X\), and \(X\) is a \(p\)-semisimple \(BCI\)-algebra if and only if \(L_P(X) = X\). We note that \(a_x \in L_P(X)\), for \(0 * (0 * a_x) = a_x\), which implies that \(a_x * y \in L_P(X)\), for all \(y \in X\). It is clear that \(G(X) \subseteq L_P(X)\) and \(x * (x * a) = a\) and \(a * x \in L_P(X)\), for all \(a \in L_P(X)\) and all \(x \in X\). For more details, we refer to [1, 4, 7, 9, 11].

Definition 2.1. ([6]) A \(BCI\)-algebra \(X\) is said to be commutative if \(x \land y = y \land x\), for all \(x, y \in X\).

Definition 2.2. ([3]) Let \(X\) be a \(BCI\)-algebra. By a \((l, r)\)-derivation of \(X\), we mean a self map \(d\) of \(X\) satisfying the identity

\[
d(x * y) = (d(x) * y) \land (x * d(y)), \text{ for all } x, y \in X.
\]

If \(X\) satisfies the identity

\[
d(x * y) = (x * d(y)) \land (d(x) * y), \text{ for all } x, y \in X,
\]

then we say that \(d\) is a \((r, l)\)-derivation of \(X\).

Moreover, if \(d\) is both a \((l, r)\)-derivation and \((r, l)\)-derivation of \(X\), we say that \(d\) is a derivation of \(X\).
Definition 2.3. ([3]) A self-map d of a BCI-algebra X is said to be regular if $d(0) = 0$.

Definition 2.4. ([3]) Let d be a self-map of a BCI-algebra X. An ideal A of X is said to be d-invariant, if $d(A) = A$.

3. Left Derivations

In this section, we define the left derivations.

Definition 3.1. Let X be a BCI-algebra. By a left derivation of X, we mean a self-map D of X satisfying

$$D(x * y) = (x * D(y)) \land (y * D(x)),\text{ for all } x, y \in X.$$

Example 3.2. Let $X = \{0, 1, 2\}$ be a BCI-algebra with Cayley table defined by

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a map $D : X \rightarrow X$ by

$$D(X) = \begin{cases}
2, & \text{if } x = 0, 1 \\
0, & \text{if } x = 2.
\end{cases}$$

Then it is easily checked that D is a left derivation of X.

Proposition 3.3. Let D be a left derivation of a BCI-algebra X. Then for all $x, y \in X$, we have

1. $x * D(x) = y * D(y)$.
2. $D(x) = a_{D(x) \land x}$.
3. $D(x) = D(x) \land x$.
4. $D(x) \in L_P(X)$.

Proof. (1) Let $x, y \in X$. Then
\[
D(0) = D(x \cdot x) = (x \cdot D(x)) \land (x \cdot D(x)) = x \cdot D(x).
\]
Similarly, $D(0) = y \cdot D(y)$. So, $x \cdot D(x) = y \cdot D(y)$.

(2) Let $x \in X$. Then
\[
D(x) = D(x \cdot 0)
= (x \cdot D(0)) \land (0 \cdot D(x))
= (0 \cdot D(x)) \cdot ((0 \cdot D(x)) \cdot (x \cdot D(0)))
\leq 0 \cdot (0 \cdot (x \cdot D(0)))
= 0 \cdot (0 \cdot (x \cdot (x \cdot D(x))))
= 0 \cdot (0 \cdot (D(x) \land x))
= a_{D(x) \land x}.
\]
Thus $D(x) \leq a_{D(x) \land x}$. But
\[
a_{D(x) \land x} = 0 \cdot (0 \cdot (D(x) \land x)) \leq D(x) \land x \leq D(x).
\]
Therefore, $D(x) = a_{D(x) \land x}$.

(3) Let $x \in X$. Then using (2), we have
\[
D(x) = a_{D(x) \land x} \leq D(x) \land x,
\]
but we know that $D(x) \land x \leq D(x)$, and hence (3) holds.

(4) Since $a_x \in L_P(X)$, for all $x \in X$, we get $D(x) \in L_P(X)$ by (2).

Remark 3.4. Proposition 3.3(4) implies that $D(X)$ is a subset of $L_P(X)$.

Proposition 3.5. Let D be a left derivation of a BCI-algebra X. Then for all $x, y \in X$, we have
(1) $y \cdot (y \cdot D(x)) = D(x)$.
(2) $D(x) \cdot y \in L_P(X)$.

Proposition 3.6. Let D be a left derivation of a BCI-algebra X. Then
(1) $D(0) \in L_P(X)$.
(2) $D(x) = 0 + D(x)$, for all $x \in X$.
(3) \(D(x + y) = x + D(y) \), for all \(x, y \in L_P(X) \).

(4) \(D(x) = x \), for all \(x \in X \) if and only if \(D(0) = 0 \).

(5) \(D(x) \in G(X) \), for all \(x \in G(X) \).

Proof.

(1) Follows by Proposition 3.3(4).

(2) Let \(x \in X \). From Proposition 3.3(4), we get

\[
D(x) = a_D(x) = 0 \ast (0 \ast D(x)) = 0 + D(x).
\]

(3) Let \(x, y \in L_P(X) \). Then

\[
D(x + y) = D(x \ast (0 \ast y)) \\
= (x \ast D(0 \ast y)) \land ((0 \ast y) \ast D(x)) \\
= ((0 \ast y) \ast D(x)) \ast ((0 \ast y) \ast D(x)) \ast (x \ast D(0 \ast y)) \\
= x \ast D(0 \ast y) \\
= x \ast ((0 \ast D(y)) \land (y \ast D(0))) \\
= x \ast D(0 \ast y) \\
= x \ast (0 \ast D(y)) \\
= x + D(y).
\]

(4) Let \(D(0) = 0 \) and \(x \in X \). Then

\[
D(x) = D(x) \land x = x \ast (x \ast D(x)) = x \ast D(0) = x \ast 0 = x.
\]

Conversely, let \(D(x) = x \), for all \(x \in X \). So it is clear that \(D(0) = 0 \).

(5) Let \(x \in G(X) \). Then \(0 \ast x = x \) and so

\[
D(x) = D(0 \ast x) \\
= (0 \ast D(x)) \land (x \ast D(0)) \\
= (x \ast D(0)) \ast ((x \ast D(0)) \ast (0 \ast D(x))) \\
= 0 \ast D(x).
\]

This gives \(D(x) \in G(X) \).

Remark 3.7. Proposition 3.6(4) shows that a regular left derivation of a BCI-algebra is the identity map. So we have the following:
Proposition 3.8. A regular left derivation of a BCI-algebra is trivial.

Remark 3.9. Proposition 3.6(5) gives that $D(x) \in G(X) \subseteq L_P(X)$.

Definition 3.10. An ideal A of a BCI-algebra X is said to be D-invariant, if $D(A) \subseteq A$.

Now, Proposition 3.8 helps to prove the following theorem.

Theorem 3.11. Let D be a left derivation of a BCI-algebra X. Then D is regular if and only if every ideal of X is D-invariant.

Proof. Let D be a regular left derivation of a BCI-algebra X. Then Proposition 3.8 gives that $D(x) = x$, for all $x \in X$. Let $y \in D(A)$, where A is an ideal of X. Then $y = D(x)$, for some $x \in A$. Thus

$$y \ast x = D(x) \ast x = x \ast x = 0 \in A.$$

Then $y \in A$ and $D(A) \subseteq A$. Therefore, A is D-invariant.

Conversely, let every ideal of X be D-invariant. Then $D(\{0\}) \subseteq \{0\}$, and hence $D(0) = 0$ and D is regular.

Finally, we give a characterization of a left derivation of a p-semisimple BCI-algebra.

Proposition 3.12. Let D be a left derivation of a p-semisimple BCI-algebra. Then the following hold for all $x, y \in X$:

1. $D(x \ast y) = x \ast D(y)$.
2. $D(x) \ast x = D(y) \ast y$.
3. $D(x) \ast x = y \ast D(y)$.

Proof. (1) Let $x, y \in X$. Then

$$D(x \ast y) = (x \ast D(y)) \wedge (y \ast D(x)) = x \ast D(y).$$

(2) We know that

$$(x \ast y) \ast (x \ast D(y)) \leq D(y) \ast y$$

and

$$(y \ast x) \ast (y \ast D(x)) \leq D(x) \ast x.$$
This means that
\[(x \ast y) \ast (x \ast D(y)) \ast (D(y) \ast y) = 0,
\]
and
\[(y \ast x) \ast (y \ast D(x)) \ast (D(x) \ast x) = 0.
\]
So
\[(x \ast y) \ast (x \ast D(y)) \ast (D(y) \ast y) = ((y \ast x) \ast (y \ast D(x))) \ast (D(x) \ast x). \tag{I}
\]
Using Proposition 3.3(1), we get
\[(x \ast y) \ast D(x \ast y) = (y \ast x) \ast D(y \ast x). \tag{II}
\]
By (I), (II) yields
\[(x \ast y) \ast (x \ast D(y)) = (y \ast x) \ast (y \ast D(x)).
\]
Since \(X\) is a \(p\)-semisimple \(BCI\)-algebra. (I) implies that
\[D(x) \ast x = D(y) \ast y.
\]
(3) We have, \(D(0) = x \ast D(x)\). From (2), we get \(D(0) \ast 0 = D(y) \ast y\) or \(D(0) = D(y) \ast y\). So \(D(x) \ast x = y \ast D(y)\).

Theorem 3.13. In a \(p\)-semisimple \(BCI\)-algebra \(X\), a self-map \(D\) of \(X\) is left derivation if and only if it is derivation.

Proof. Assume that \(D\) is a left derivation of a \(BCI\)-algebra \(X\). First, we show that \(D\) is a \((r, l)\)-derivation of \(X\). Then
\[
D(x \ast y) = x \ast D(y)
= (D(x) \ast y) \ast ((D(x) \ast y) \ast (x \ast D(y)))
= (x \ast D(y)) \land (D(x) \ast y).
\]
Now, we show that D is a (r, l)-derivation of X. Then

$$D(x * y) = x * D(y)$$

$$= (x * 0) * D(y)$$

$$= (x * (D(0) * D(0))) * D(y)$$

$$= (x * ((x * D(x)) * (D(y) * y))) * D(y)$$

$$= (x * ((x * D(y)) * (D(x) * y))) * D(y)$$

$$= (x * D(y)) * ((x * D(y)) * (D(x) * y))$$

$$= (D(x) * y) \land (x * D(y)).$$

Therefore, D is a derivation of X.

Conversely, let D be a derivation of X. So it is a (r, l)-derivation of X. Then

$$D(x * y) = (x * D(y)) \land (D(x) * y)$$

$$= (D(x) * y) * ((D(x) * y) * (x * D(y)))$$

$$= x * D(y) = (y * D(x)) * ((y * D(x)) * (x * D(y)))$$

$$= (x * D(y)) \land (y * D(x)).$$

Hence, D is a left derivation of X.

Acknowledgments

The authors are highly grateful to the referees and Professor B. Ahmad for the valuable comments and suggestions for improving the paper.

References

Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80003, Jeddah, 21589, Saudi Arabia.
E-mail: prof_h_abujabal@yahoo.co

Department of Mathematics, Faculty of Education, Science Sections, P. O. Box 33910, Jeddah, 21458, Saudi Arabia.
E-mail: noooora55@hotmail.com